我的家园

我的家园

配置ThreadPoolExecutor

Posted on 2012-04-15 16:26 zljpp 阅读(764) 评论(0)  编辑  收藏

[本文是我对Java Concurrency In Practice C08的归纳和总结.  转载请注明作者和出处,  如有谬误, 欢迎在评论中指正. ]

Executors的静态方法newCachedThreadPool, newFixedThreadPool, newScheduledThreadPool所返回的线程池都是ThreadPoolExecutor对象或者其子类对象. ThreadPoolExecutor提供了多种配置, 可以根据实际定制合适的线程池.

 

线程的创建和销毁

ThreadPoolExecutor构造函数中的corePoolSize, maximumPoolSize, keepAliveTime参数与线程的创建和销毁相关. 

corePoolSize指定ThreadPoolExecutor中持有的核心线程数, 除非task队列已满, ThreadPoolExecutor不会创建超过核心线程数的线程(corePoolSize为0时是一种特殊情况, 此时就算task队列没有饱和, 向线程池第一次提交task时仍然会创建新的线程), 核心线程一旦创建就不会销毁, 除非设置了allowCoreThreadTimeOut(true), 或者关闭线程池.

maximumPoolSize指定线程池中持有的最大线程数. 对于超过核心线程数的线程, 如果在指定的超时时间内没有使用到, 就会被销毁.

keepAliveTime指定超时时间.

Executors类的静态方法创建线程池的源码:

public static ExecutorService newCachedThreadPool() {
	// 核心线程数为0, 最大线程数为Integer.MAX_VALUE, 超时时间为60s
	return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>());
}

public static ExecutorService newFixedThreadPool(int nThreads) {
	// 核心线程数和最大线程数都为调用方指定的值nThreads, 超时时间为0
	return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS,
			new LinkedBlockingQueue<Runnable>());
}

public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
	// 核心线程数由调用方指定, 最大线程数为Integer.MAX_VALUE, 超时时间为0
	return new ThreadPoolExecutor(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS, new DelayedWorkQueue());
} 

 

task队列

线程池内部持有一个task队列, 当task的提交速度超过task的执行速度时, task将被缓存在task队列中等待有线程可用时再执行. ThreadPoolExecutor在创建时可以为其指定task队列, 开发者一般有三种选择: 有界队列, 无界队列以及同步队列. Executors.newFixedThreadPool和Executors.newScheduledThreadPool返回的ThreadPoolExecutor对象使用的是无界队列, 而Executors.newCashedThreadPool返回的ThreadPoolExecutor对象使用的是同步队列.

为线程数不多的线程池指定一个容量大的队列(或者无界队列), 有助于减少线程间切换, CPU等方面的消耗, 代价是可能会造成吞吐量下降. 如果使用的是有界队列, 队列可能会被填满, 此时将根据指定的饱和策略进行处理(见之后的讲述).

对于线程数很大的线程池, 可以使用同步队列. 同步队列(SynchronousQueue)其实不能算是一种队列, 因为同步队列没有缓存的作用. 使用同步队列时, task被提交时, 直接由线程池中的线程接手. 如果此时线程池中没有可用的线程, 线程池将创建新的线程接手. 如果线程池无法创建新的线程(比如线程数已到达maximumPoolSize), 则根据指定的饱和策略进行处理(同样见之后的讲述).

 

饱和策略

如果线程池使用的是有界队列, 那么当有界队列满时继续提交task时饱和策略会被触发.

如果线程池使用的是同步队列, 那么当线程池无法创建新的线程接手task时饱和策略会被触发.

如果线程池被关闭后, 仍然向其提交task时, 饱和策略也会被触发.

ThreadPoolExecutor.setRejectedExecutionHandler方法用于设定饱和策略. 该方法接受一个RejectedExecutionHandler对象作为参数. RejectedExecutionHandler只定义了一个方法:rejectedExecution(Runnable r, ThreadPoolExecutor executor). rejectedExecution方法在饱和策略被触发时由系统回调.

ThreadPoolExecutor类中预定义了多个RejectedExecutionHandler的实现类: AbortPolicy, CallerRunsPolicy, DiscardPolicy, 和DiscardOldestPolicy.

AbortPolicy是默认的饱和策略, 其rejectedExecution方法为:

public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
	throw new RejectedExecutionException();
} 

可见默认情况下, 触发饱和策略时将抛出RejectedExecutionException异常.

CallerRunsPolicy. 饱和时将在提交task的线程中执行task, 而不是由线程池中的线程执行:

public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
	if (!e.isShutdown()) {
		r.run();
	}
}

使用CallerRunsPolicy的例子:

class LifecycleWebServer {
	// MAX_THREAD_COUNT和MAX_QUEUE_COUNT的值根据系统的实际情况确定
	private static final int MAX_THREAD_COUNT = 100;
	private static final int MAX_QUEUE_COUNT = 1000;

	// 使用有界队列作为task队列, 当有界队列满时, 将触发饱和策略
	private final ThreadPoolExecutor exec = new ThreadPoolExecutor(0, MAX_THREAD_COUNT, 60L, TimeUnit.SECONDS,
			new ArrayBlockingQueue<Runnable>(MAX_QUEUE_COUNT));

	public void start() throws IOException {
		// 设置饱和策略为CallerRunsPolicy
		exec.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
		ServerSocket socket = new ServerSocket(80);
		while (!exec.isShutdown()) {
			try {
				final Socket conn = socket.accept();
				exec.execute(new Runnable() {
					public void run() {
						handleRequest(conn);
					}
				});
			} catch (RejectedExecutionException e) {
				if (!exec.isShutdown())
					log("task submission rejected", e);
			}
		}
	}

	public void stop() {
		exec.shutdown();
	}

	void handleRequest(Socket connection) {
		Request req = readRequest(connection);
		if (isShutdownRequest(req))
			stop();
		else
			dispatchRequest(req);
	}
	
	public static void main(String[] args) {
		LifecycleWebServer server = new LifecycleWebServer();
		try {
			// 在main线程中启动server
			server.start();
		} catch (IOException e) {
			e.printStackTrace();
		}
	}
} 

LifecycleWebServer中的线程池使用CallerRunsPolicy作为其饱和策略. 如果线程池饱和时main线程仍然向线程池提交task, 那么task将在main中执行. main线程执行task是需要一定时间的, 这样就给了线程池喘息的机会, 而且main线程在执行task的时间内无法接受socket连接, 因此socket连接请求将缓存在tcp层. 如果server过载持续的时间较长, 使得tcp层的缓存不够, 那么tcp缓存将根据其策略丢弃部分请求. 如此一来, 整个系统的过载压力逐步向外扩散: 线程池-线程池中的队列-main线程-tcp层-client. 这样的系统在发生过载时是比较优雅的: 既不会因为过多的请求而导致系统资源耗尽, 也不会一发生过载时就拒绝服务, 只有发生长时间系统过载时才会出现客户端无法连接的情况.

DiscardPolicy. 该策略将最新提交的task丢弃:

public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
	// 丢弃, 不做任何处理
} 

DiscardOldestPolicy. 该策略丢弃队列中处于对头的task, 且试着再次提交最新的task:

public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
    if (!e.isShutdown()) {
	e.getQueue().poll();
	e.execute(r);
    }
} 

DiscardOldestPolicy与PriorityBlockingQueue结合使用时可能会造成不好的结果, 因为PriorityBlockingQueue中位于对头的task是优先级最高的task, 发生饱和时反而首先丢弃优先级高的task可能不符合需求.

ThreadPoolExecutor没有提供饱和时阻塞的策略, 不过开发者可以结合Semaphore实现:

public class BoundedExecutor {
	private final Executor exec;
	private final Semaphore semaphore;

	public BoundedExecutor(Executor exec, int bound) {
		this.exec = exec;
		// 设定信号量permit的上限
		this.semaphore = new Semaphore(bound);
	}

	public void submitTask(final Runnable command) throws InterruptedException {
		// 提交task前先申请permit, 如果无法申请到permit, 调用submitTask的线程将被阻塞, 直到有permit可用
		semaphore.acquire();
		try {
			exec.execute(new Runnable() {
				public void run() {
					try {
						command.run();
					} finally {
						// 提交成功了, 运行task后释放permit
						semaphore.release();
					}
				}
			});
		} catch (RejectedExecutionException e) {
			// 如果没有提交成功, 也需要释放permit
			semaphore.release();
		}
	}
}

 

ThreadFactory

在创建ThreadPoolExecutor时还可以为其指定ThreadFactory, 当线程池需要创建新的线程时会调用ThreadFactory的newThread方法. 默认的ThreadFactory创建的线程是nonDaemon, 线程优先级为NORM_PRIORITY的线程, 并且为其指定了可识别的线程名称:

public Thread newThread(Runnable r) {
	Thread t = new Thread(group, r, namePrefix + threadNumber.getAndIncrement(), 0);
	if (t.isDaemon())
		t.setDaemon(false);
	if (t.getPriority() != Thread.NORM_PRIORITY)
		t.setPriority(Thread.NORM_PRIORITY);
	return t;
} 

开发者可以根据自身需要为ThreadPoolExecutor指定自定义的ThreadFactory. 例如:

public class MyThreadFactory implements ThreadFactory {
	private final String poolName;

	public MyThreadFactory(String poolName) {
		this.poolName = poolName;
	}

	public Thread newThread(Runnable runnable) {
		return new MyAppThread(runnable, poolName);
	}
}

public class MyAppThread extends Thread {
	public static final String DEFAULT_NAME = "MyAppThread";
	private static volatile boolean debugLifecycle = false;
	private static final AtomicInteger created = new AtomicInteger();
	private static final AtomicInteger alive = new AtomicInteger();
	private static final Logger log = Logger.getAnonymousLogger();

	public MyAppThread(Runnable r) {
		this(r, DEFAULT_NAME);
	}

	public MyAppThread(Runnable runnable, String name) {
		// 为自定义的Thread类指定线程名称
		super(runnable, name + "-" + created.incrementAndGet());
		// 设置UncaughtExceptionHandler. UncaughtExceptionHandler的uncaughtException方法将在线程运行中抛出未捕获异常时由系统调用
		setUncaughtExceptionHandler(new Thread.UncaughtExceptionHandler() {
			public void uncaughtException(Thread t, Throwable e) {
				log.log(Level.SEVERE, "UNCAUGHT in thread " + t.getName(), e);
			}
		});
	}

	public void run() {
		// Copy debug flag to ensure consistent value throughout. 
		boolean debug = debugLifecycle;
		if (debug)
			log.log(Level.FINE, "Created " + getName());
		try {
			alive.incrementAndGet();
			super.run();
		} finally {
			alive.decrementAndGet();
			if (debug)
				log.log(Level.FINE, "Exiting " + getName());
		}
	}

	public static int getThreadsCreated() {
		return created.get();
	}

	public static int getThreadsAlive() {
		return alive.get();
	}

	public static boolean getDebug() {
		return debugLifecycle;
	}

	public static void setDebug(boolean b) {
		debugLifecycle = b;
	}
}

 

扩展ThreadPoolExecutor

ThreadPoolExecutor类提供了多个"钩子"方法, 以供其子类实现, 比如beforeExecute, afterExecute, terminated等. 所谓"钩子"是指基类预留的, 但是没有提供具体实现的方法, 其方法体为空. 子类可以根据需要为"钩子"提供具体实现.

beforeExecute和afterExecute方法分别在执行task前后调用:

private void runTask(Runnable task) {
	final ReentrantLock runLock = this.runLock;
	runLock.lock();
	try {
		if (runState < STOP && Thread.interrupted() && runState >= STOP)
			thread.interrupt();
		boolean ran = false;
		beforeExecute(thread, task);
		try {
			task.run();
			ran = true;
			afterExecute(task, null);
			++completedTasks;
		} catch (RuntimeException ex) {
			if (!ran)
				afterExecute(task, ex);
			throw ex;
		}
	} finally {
		runLock.unlock();
	}
} 

beforeExecute和afterExecute方法可以用于记录日志, 统计数据等操作.

terminated方法在线程池被关闭后调用. terminated方法可以用于释放线程池申请的资源.

 






只有注册用户登录后才能发表评论。


网站导航: